Tubifex: a biological method for enhancing dewatering of oil sands tailings. An update on the on-going research program

Miguel de Lucas Pardo¹, Xiaojuan Yang²,³, Maria Ibanez⁴, Luca Sittoni¹*, Lijun Deng³, A. Ulrich³

¹ Deltares, the Netherlands, ² Sichuan University, China, ³ University of Alberta, Canada, ⁴ Delft Technical University, The Netherlands
What are *Tubifex*?

- Sludge worm/sewage worm
- Inhabit the bottom sediments of lakes, rivers and occasionally sewer lines and outlets
- Very resistant to contamination, in fact, Tubifex density is often used as indicator of ecological deterioration of water bodies
Objective

Objective of these studies: assess and quantify whether *Tubifex* can improve dewatering and strength of oil sands tailings deposit, and is a feasible technology at operational scale.

1. Phase 0, 2014, simple trial on beakers
2. Phase I, 2015: Settling columns at 5% solids content (SC) old FMFT
3. Phase II, 2016: Settling columns at 30% SC on same old FMFT
4. Phase III, 2017 & 2018: Settling columns on fresh FFT and TT + beaker tests for survival (IOSI) + Large settling column

Results presented as:
- Survival rate
- Solids content performance
- Strength of tailings
- Consolidation parameters (draft)
Many years of working with mud and sediment dynamics in the Markermeer, to understand why the turbidity was so high.
Inspiration

Many years of working with mud and sediment dynamics in the Markermeer, to understand why the turbidity was so high

Realized:

• Interaction sediment-biota was critical
• *Tubifex* accelerate dewatering of natural mud (de Lucas Pardo, 2014)
Phase 0 – 2014 quick tests on Canadian soil

First test on small beakers (total ~ 12 days) showed:

- Enhance consolidation
- Enhanced strength

![Mudline vs time graph](image)

- Bed Height (cm)
- Time (hours)
- Black line: fauna
- Gray line: no fauna

![Photos of samples](image)
Survival Rate

- Tests in small beakers, with 8 Tubifex per beaker initially
- Tests at 20 °C with air pumping, no air pumping and 4 °C no air

- Tubifex are able to survive in oil sands tailings, and weakly reproduce
- No major difference between air and no air
• Tests in small beakers, with 8 *Tubifex* per beaker initially
• Tests at 20 °C with air pumping, no air pumping and 4 °C no air

Tubifex are able to survive in oil sands tailings, and weakly reproduce
• No major difference between air and no air
• No major difference between 20 °C and 4 °C
• Monitored mudline continuously during sedimentation and consolidation
• Derived solids content from mudline.

Phase I, initial concentration 40 g/l (~5% SC), ~2 months. C2, no worms; C4, C5, C6 worms (triplicate)

Phase II: Initial SC 30%. ~3 months. Dashed, no Tubifex, solid Tubifex with darker implying higher Tubifex concentration
Solids Content

- Monitored mudline continuously during sedimentation and consolidation
- Derived solids content from mudline.

Phase I, initial concentration 40 g/l (~5% SC), ~2 months. C2, no worms; C4, C5, C6 worms (triplicate)

Phase II: Initial SC 30%. ~3 months. Dashed, no Tubifex, solid Tubifex with darker implying higher Tubifex concentration
Phase II: measured at two depths in columns, near the top and bottom

- Near the bed results are consistently show SC and strength generally proportional to *Tubifex* concentration.
- Near the top, scatter is larger
Dewatering performance

Application of the equations of Merckelbach and Kranenburg to mudline allows for derivation of sedimentation and consolidation parameters.

Obtained: K_k, K_p, n_f, $\Gamma_c (C_v)$. These can be correlated to p-e-k (in progress)

\[
\sigma_{zz}^{sk} = K_p \left(\frac{\Theta_S^m}{1-\Theta_S^m} \right)^{\frac{2}{3-n_f}} - K_{p,0}
\]

\[
k = K_k \left(\frac{\Theta_S^m}{1-\Theta_S^m} \right)^{\frac{2}{3-n_f}}
\]

\[
\Gamma_c = \frac{2}{3-n_f} \frac{K_k K_p}{g \rho_w}
\]
• Same effective stress -> lower void ratio (more compressible?)
• Same void ratio -> higher permeability
• Different soil structure (n_f)
Conclusions

- **Tubifex can survive in oil sands tailings.** Reproduction is weak. Next phase will investigate how to optimize / enhance *Tubifex* survival and reproduction in oil sands tailings.

- **Tubifex accelerate dewatering** with 10 – 20% relative increase in SC after two to three months (test duration). Interesting to compare to polymeric flocculant.

- **Tubifex influence the soil structure** forming channels and (possibly) modifying the micro clay-water system structure. This **increases the permeability** On-going data analysis and next phase will quantify consolidation parameters in relation to polymeric treated tailings.

- **Tubifex increase tailings strength**, possibly due to geochemical reaction caused by biological activity.

- **Relative increase** in SC and strength is generally proportional to *Tubifex* density.
What is next

This study will continue in 2017 and 2018 with an additional experimental program co-funded by IOSI and Deltares to further test this technology towards pilot.

Specific objectives are:
1. Quantify dewatering properties on different tailings types (fFFT, TT) in relation to polymeric flocculants
2. Optimize *Tubifex* survival and reproduction in oil sands environment
3. Scale up to larger columns.