A Comprehensive Control Scheme for Dynamic Inline Flocculation of Oil Sands Tailings

Scott E. Webster, Wayne A. Brown, Babak Derakhshandeh, Neville Dubash, Clara Gomez, and Christian N. Veenstra
Coanda Research and Development Corporation, Burnaby, British Columbia, Canada

Abu Junaid
Shell Canada Limited, Calgary, Alberta, Canada

International Oil Sands Tailings Conference
Lake Louise, December 5, 2016
Definitions & cautionary note

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.
Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers (SPE) 2P + 2C definitions.
Resources and potential: Our use of the term “resources and potential” are consistent with SPE 2P + 2C + 2U definitions.
Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.
Shales: Our use of the term ‘shales’ refers to tight, shale and coal bed methane oil and gas acreage.
The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this release “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words "we", "us" and "our" are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this release refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations” respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This release contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this release, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets; and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. There can be no assurance that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this release are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2015 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this release and should be considered by the reader. Each forward-looking statement speaks only as of the date of this release, July 28, 2016. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this release.

With respect to operating costs synergies indicated, such savings and efficiencies in procurement spend include economies of scale, specification standardisation and operating efficiencies across operating, capital and raw material cost areas.

We may have used certain terms, such as resources, in this release that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
Inline Flocculation

- Mix flocculant with tailings and transport to deposit
Inline Flocculation

- Mix flocculant with tailings and transport to deposit
- Need appropriate instruments
Inline Flocculation

- Mix flocculant with tailings and transport to deposit
- Need appropriate instruments
- Plus control scheme
Optimal Flocculation

- Mixing state
- Polymer dosage
- Varying conditions
Inline Flocculation

- Challenges:
 - Dosage
 - Mixing
- Dynamic mixing gives control, but still need to find optimum
Flocculation Apparatus

- 5” inline mixer
- Polymer injected upstream of hydrofoil impellers
- 10 m³/h but applicable to larger scales
Control Strategy

- Appropriate instruments
- Feed-forward and feedback control
Control Elements

• Feed standardization
• Polymer delivery
• Mixing
Polymer Delivery

- \(Q_{poly} = f(Q_{FFT}, \rho_{FFT}, \beta, \phi_{poly}) \)
- Optimal dosage in g/tonne depends on clay content and density of feed
- Required polymer flow rate depends on FFT flow rate and dosage, as well as FFT and polymer properties
- Feed-forward control
FFT Clay Content

- Used Bruker NIR spectrometer to measure online
- 4200 – 7500 cm\(^{-1}\) (1.3 – 2.4 µm)
- Emission head mounted on custom pipe spool with sapphire window
- Chemometric analysis to build calibration curve for MBI
Optimal Polymer Dosage

- Performed ~150 flocculation experiments.
- Selected optimal dosage for each feed material
- $\beta = f(\rho, \text{MBI})$
- Fitted to create feed-forward map
Mixer Speed

• Similar approach to develop feed-forward scheme

\[N = f(K, Q_{FFT}, Q_{poly}, D) \]

• \(K = f(\rho, MBI) \) feed-forward map from experimental results

• Added feedback trim

Flocculation State

- Challenging to measure
- Desire good dewatering and material strength
- Defined mixing states
- Investigated instruments:
 - PVM
 - FBRM
Flocculated FFT Image Analysis

• Particle Vision and Measurement (PVM) instrument from Mettler Toledo
• Process microscope

Focussed Beam Reflectance Measurement (FBRM)

- Probe inserted into process similar to PVM
- Instrument provides chord length distribution, similar to particle size distribution
- Associated large particles with presence of flocs
Mixing State Transmitter

• Analyzes PVM images using modified facial recognition techniques
• Combines image data with other results, e.g. FBRM
• Estimates mixing state for feedback trim using maximum likelihood classifier

Mixing State Transmitter

Undermixed | Dewatering | Strength

1 2 3 4

Coanda
Research & Development Corporation
Laboratory Results

- Used feed-forward
- Feedback data collected but not used online
- Disabled control, switched tanks, then re-enabled

- Sample results:
 1. CST 8 s, Yield 96 Pa
 2. CST 20 s, Yield 38 Pa
 3. CST 14 s, Yield 125 Pa

December 5, 2016
Future Work

• Test the different elements of the scheme and identify the optimum configuration
• Field testing at larger scale