ON THE BENEFICIAL USE OF SOFT MUD – CASE STUDY MARKER WADDEN PROJECT

THOMAS VIJVERBERG, WALTER JACOBS, ROELAND LIEVENS, ALEXIS ROELS

INTERNATIONAL OIL SANDS TAILINGS CONFERENCE 2016

5-12-2016
INTRODUCTION

LAKE MARKERMEER AND PROJECT MARKER WADDEN

Let’s start with a video!

http://magazine.boskalis.com/issue04/marvelous-marker-wadden
INTRODUCTION

SIMILARITIES BETWEEN MARKER WADDEN PROJECT AND OIL SAND INDUSTRY

- Reclamation is required from an environmental and regulatory perspective.
- The project is an example of how to reclaim an area using large quantities of soft material for which dewatering and strength development is a rather slow process.
- Handling large volumes requires a cost-effective work method: limit use of additives, limit multiple operational rehandling steps, smart use of natural processes.
- The spatial scale of the Marker Wadden (300 – 500 ha) is comparable to typical oil sands ponds (diameter of ~2-4 km, 300 – 1000 ha).
DESIGN

- Borrowing pit
- Rock revetment
- Siltation trench
- Recreational port
- Sandy Beaches
- Underwater dams
DESIGN – KEY ISSUES

Water level Markermeer

Requirements:
- Final elevation levels
- Strength requirements (goose accessibility)

Reclamation Consolidation Dewatering Drying / crust formation Final
DESIGN – KEY ISSUES

CRUST FORMATION AND EFFECT OF VEGETATION
SETTLING COLUMN TESTS (BOSKALIS LAB) AND SEEPAGE INDUCED CONSOLIDATION (SIC) TESTS (DELTARES)

- Determine consolidation relations, i.e. compressibility and permeability relations that are required for consolidation modelling.

- Representative clay material from Lake Markermeer.
DESIGN - LARGE SCALE TESTING

CONTAINER TESTS

- Determine if scale effects can play a role.
- Three containers with the following dimensions: $l \times w = 5.9\,\text{m} \times 2.3\,\text{m}$ and $h = 1.9\,\text{m}$ were filled with representative clay material from Lake Markermeer.
- One container was filled completely at the start of the experiment, other two initially filled half and later with an additional filling layer.
NUMERICAL MODELLING OF CONSOLIDATION

- DELCON model. 1D model for self-weight consolidation of mud developed by Deltares.
- Input: relations between void ratio, permeability and effective stress. Based on outcome of column tests and SIC tests.
- Test filling strategies and determine the sensitivity of the outcomes for initial parameters.
- Focus on elevations and density development.
- Effect of crust formation on consolidation behavior was analyzed in terms of extra bed level lowering, based on model developed by TU Delft.
OPERATIONAL WORKING METHOD
ADAPTIVE MANAGEMENT DURING CONSTRUCTION

DECREASE UNCERTAINTIES DUE TO MONITORING AND ADDITIONAL MODELLING
ADAPTIVE MANAGEMENT DURING CONSTRUCTION

FIELD MONITORING AND ADDITIONAL MODELLING

- Once or twice a week to monitor the consolidation behavior of the material in the compartments.
- Density profiles from the fresh bed to the original bed were taken at various locations inside the compartments, using a MudBug device.
- ‘Bed’ levels with single beam and multibeam.
- Additional DELCON modelling:
 - Improve predictions
 - Determine final heights
MARKER WADDEN AS AN EXAMPLE FOR RECLAIMING OIL SANDS TAILINGS PONDS

SIMILARITIES AND DIFFERENCES

- Although characteristics of the soft clay material in the Markermeer are different from the oil sands tailings, the same physical processes occur → same theory and tools can be used for predictions.

- Similar operational work method can be applied and adaptive management of operations is needed to continuously optimize that work method. → monitoring needed!

- Differences in reclamation depth: 5 m in the Markermeer – 10’s of m in oil sands ponds
 - Work method cannot exactly be copied as consolidation times would be too long
 - Sand capping techniques between filling layers
 - Proven technique in multiple dredging projects
 - Needs advanced engineering and dredging expertise
 - Strategy of Marker Wadden project as example
CONCLUSIONS

- Building with soft muddy material is possible without the use of chemical additives, in an economical and safe way.

- The Marker Wadden project can be considered as a good example for the oil sands industry how to reclaim large deposits of soft mud:
 - reclamation large quantities of soft material at relatively low costs
 - the same physical processes occur and the same design tools are applicable
 - an integrated and iterative design process is needed, incorporating state-of-the-art design tools/engineering, operational experience (adaptive management), cost and safety

- Difference in reclamation depth requires measures (like sand capping between filling layers) to reduce consolidation time.
Thank you for your attention!

thomas.vijverberg@boskalis.com
Thank you for your attention!

thomas.vijverberg@boskalis.com