OVERVIEW OF HOLISTIC APPROACH TO OIL SANDS TAILINGS MANAGEMENT

Siba Patnayak and Saidul Alam
December 05, 2016
Presentation Outline

- Oil Sands Extraction Process
- Characteristics of Oil Sands Tailings
- Regulatory Requirements for Oil Sands Tailings Management
- Key Elements of Holistic Tailings Management Approach
- Review of Directive 085 Applications
- Conclusions
- Clark Hot Water Extraction process is used
- Bitumen is extracted as froth and waste is disposed as tailings slurry
- Tailings typically consists of sand, clay, silt, other mineral particles, residual hydrocarbons and process affected water
Typical oil sands tailings contain ~15-30% fines (w/w)

~50-55% fines are captured in beach

FT has >5% suspended solids (w/w) and <5 kPa shear strength

FT settles relatively at a faster rate in the initial 2 to 3 year period to reach ~30% solids content

- Reduction in void ratio makes further dewatering and self-weight consolidation very slow
Regulatory Requirements for Oil Sands Tailings Management

- Directive 074 (ERCB 2009)
 - Fines capture and undrained shear strength
 - Suspended in 2014

- Tailings Management Framework – TMF (AESRD 2015) and Directive 085 (AER 2016)
 - Provide opportunity for risk based holistic tailings management approach
 - Specify requirements for managing FT volumes
 - Provide flexibility to the operators for developing site specific tailings management plans
 - Hold operators accountable for managing tailings responsibly
Key Elements of TMF and Directive 085

- TMF sets out targets indicators, triggers and limits

- Ready to Reclaim (RTR)
 - Sub-objective 1 – Deposit’s physical properties are on a trajectory to support future stages of activities
 - Sub-objective 2 – Minimize environmental impacts and ensure self-sustaining ecosystem is established
 - FT must meet RTR status in order to be removed from FT inventory

- Ready for Reclamation (RFR)
 - Identify project areas that are available for reclamation
Challenges Managing Oil Sands Tailings

- Large volume creates containment issues
 - Containment requirement is 0.4 to 0.6 m3/t of processed ore
- Slow self-weight consolidation and dewatering process
 - 976 Mm3 FT inventory in 2013 (AESRD 2015)
- Toxic in nature
 - Risk to environment during and after mining operation ceases
- Closure and reclamation objectives
- Stakeholder’s expectations
- Changing and increasingly stringent regulatory requirements
Key Elements of Holistic Tailings Management Approach

1. Closure and Reclamation objectives
 - End land uses
 - Functional landscape
 - Progressive reclamation
 - Meeting stakeholder expectations
 - Meeting regulatory requirements

2. Tailings characteristics
 - Dewatering
 - Consolidation
 - Physicochemical interaction
 - Water chemistry

3. Tailings technology and treatment plan
 - Fines capture
 - Consolidation
 - Chemical stability
 - Released water quality and quantity
 - Overall environmental impact

4. Tailings deposition strategy
 - TSF design
 - Tailings deposition method
 - Infrastructure layout
 - Water management plan

5. Progressive closure and reclamation plan

6. Performance monitoring and measurement plan

7. Adaptive management

Reclamation and closure
1. Understand Closure and Reclamation Objectives

- Meet regulatory requirements
- Meet stakeholder’s expectations
- Act towards responsible environmental management
 - Set goals for achieving functional landscape and progressive reclamation
2. Understand Tailings Characteristics

- Physical & chemical properties influence closure landform and closure & reclamation schedule

- Consolidation characteristics
 - Bench scale & large scale laboratory testing
 - Commercial software
 - Field consolidation prediction is challenging
 - Choose assumptions carefully and know the model & data limitations
 - Consider full scale field pilot programs
3. Develop Tailings Technology and Fluid Tailings Treatment Plans

- Selected technology must:
 - Reduce FT generation
 - Minimize environmental risks during operation
 - Meet final closure and reclamation objectives

- Must be designed to maximize long-term stability of deposited material:
 - Consolidation behaviour affects closure landform and reclamation schedule
 - Released water quality
 - Overall environmental impact
Classification of Tailings Technologies

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
<th>Success Criteria</th>
<th>Challenges</th>
</tr>
</thead>
</table>
| 1. Mixing of coarse tailings stream with fine tailings stream | ▪ CT
▪ NST | ▪ Segregation | ▪ Availability of coarse tailings
▪ SFR of ore, etc. |
| 2. Treatment of fine tailings stream | ▪ TT
▪ ILF with thin lift drying (TRO, AFD)
▪ ILF with thick lift deposition
▪ Centrifuge
▪ Filter press
▪ Geotubes | ▪ Dewatering and consolidation | ▪ Large deposition areas
▪ Material transportation
▪ Capping |
| 3. Water capped deposits | ▪ End Pit Lake | ▪ Development of self-sustaining ecosystems
▪ Water quality | ▪ Fines re-suspension |
Tailings Technologies Implemented and/or Proposed

<table>
<thead>
<tr>
<th>Technology</th>
<th>Operator</th>
<th>Deposit Type</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composite Tailings (CT)</td>
<td>Syncrude, Suncor, Shell</td>
<td>Fines-enriched sand</td>
<td>Requires coarse sand tailings (competition with dyke construction), mixed performance results, segregation issues</td>
</tr>
<tr>
<td>Non-segregated Tailings (NST)</td>
<td>CNRL</td>
<td>Fines-enriched sand</td>
<td>Requires coarse sand tailings (competition with dyke construction), limited experience, segregation issues</td>
</tr>
<tr>
<td>Inline flocculation (ILF) with thin lift drying</td>
<td>Suncor (TRO), Shell (AFD)</td>
<td>Thin-layered fines-dominated deposits</td>
<td>Proven technology, can achieve desired dewatering performance, large drying areas, material rehandling</td>
</tr>
<tr>
<td>Thickened Tailings (TT)</td>
<td>Imperial Oil (Kearl), Shell</td>
<td>Deep fines-dominated deposits</td>
<td>Challenges with tailings dewatering, ability to cap</td>
</tr>
<tr>
<td>Centrifuge</td>
<td>Syncrude, Shell</td>
<td>Deep fines-dominated deposits</td>
<td>Proven technology, extent of dewatering depends on conveyance method</td>
</tr>
<tr>
<td>End Pit Lake (EPL)</td>
<td>Syncrude, Suncor, Shell, Imperial Oil (Kearl) and CNRL</td>
<td>Water-capped deposits</td>
<td>Pending regulatory approval; commercial demonstration ongoing at Syncrude’s Base Mine Lake</td>
</tr>
</tbody>
</table>

Additionally CNRL has implemented low fines mine plan to reduce FT generation
Alternate / Supplemental Technologies

<table>
<thead>
<tr>
<th>Operator</th>
<th>Tailings Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suncor</td>
<td>- ILF (deep cohesive deposit)</td>
</tr>
<tr>
<td></td>
<td>- Centrifuge</td>
</tr>
<tr>
<td></td>
<td>- TT</td>
</tr>
<tr>
<td>Canadian Natural</td>
<td>- NST enhancement</td>
</tr>
<tr>
<td></td>
<td>- Improvement of MFT spiking</td>
</tr>
<tr>
<td></td>
<td>- Semi in situ MFT treatment</td>
</tr>
<tr>
<td></td>
<td>- NST revegetation</td>
</tr>
<tr>
<td>Shell</td>
<td>- Filter press</td>
</tr>
<tr>
<td></td>
<td>- ILF (deep cohesive deposit)</td>
</tr>
<tr>
<td></td>
<td>- Geotubes</td>
</tr>
<tr>
<td></td>
<td>- Floating centrifuge</td>
</tr>
<tr>
<td>Syncrude</td>
<td>- Accelerated dewatering</td>
</tr>
<tr>
<td>Imperial Oil (Kearl)</td>
<td>- No alternative technologies</td>
</tr>
</tbody>
</table>
4. Develop Tailings Deposition Strategy

- Short-term and long-term containment requirements
 - Tailings and site-wide water balance
 - Beach slope sensitivity analyses
4. Develop Tailings Deposition Strategy (contd.)

- Method of dyke construction
 - Location, topography, future expansion requirements and material availability
 - Adopt “Observational Method”
4. Develop Tailings Deposition Strategy (contd.)

- Selection of tailings deposition method
 - Beaching or sub-aerial deposition
 - Sub-aqueous deposition (under water or under tailings)

- Infrastructure layout
 - Number of deposition points
 - On-spec and off-spec tailings management plan
5. Develop Progressive Closure and Reclamation Plans

- Adopt an iterative process for mining, tailings and closure & reclamation planning
- Periodic status maps depict progression of closure and reclamation goals aligned with mine and tailings plans
- Review TSF closure criteria in consultation with community during operating phase
 - Continuously update tailings management strategy
6. Develop Performance Monitoring and Measurement Plans

- FT inventory must not exceed approved profile
 - Hard bottom – CT09, CPT, etc.
 - Mudline – Sonar survey, density plate, interval depth samples, etc.

- Deposit specific RTR criteria and measurement plans to ensure FT deposits meet RTR status

- Measurement plans to ensure reclamation activities can be initiated
 - Depend on capping method
Examples of Proposed Ready-to-Reclaim Criteria

<table>
<thead>
<tr>
<th>Operator</th>
<th>Tailings Technology</th>
<th>Sub-objective 1 Indicators / Measures</th>
<th>Sub-objective 2 Indicators / Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suncor</td>
<td>ILF (e.g. TRO)</td>
<td>Clay to water ratio (CWR)</td>
<td>Measures not explicitly defined</td>
</tr>
<tr>
<td>Canadian Natural</td>
<td>NST</td>
<td>Solids content, porewater pressure, effective stress, SFR and consolidation</td>
<td>Soil moisture, type and depth, soil chemistry, upland/wetland vegetation, TSS, salinity and light penetration</td>
</tr>
<tr>
<td>Shell</td>
<td>AFD, CT, TT and Centrifuge</td>
<td>Solids content</td>
<td>Groundwater monitoring and soil & water chemistry</td>
</tr>
<tr>
<td>Syncrude</td>
<td>CT, Centrifuge</td>
<td>Solids content</td>
<td>Groundwater monitoring, deposit water volume & chemistry, fugitive emissions</td>
</tr>
<tr>
<td>Imperial Oil (Kearl)</td>
<td>TT</td>
<td>Solids content</td>
<td>Groundwater & surface water monitoring, water chemistry, stability and erosion</td>
</tr>
</tbody>
</table>

1Directive 085 Application (2016)
7. Adaptive Management

- Flexible decision making tool to deal with uncertainties in tailings technology performance
- Structured and iterative process
- Reduce performance uncertainties over time through monitoring
 - Explore alternatives
 - Predict the outcome
 - Implement alternatives
 - Monitor the outcome
 - Change management based on new knowledge
Tailings management is complex and hence requires a holistic approach.

Must consider:
- Reclamation and closure objectives
- Regulatory requirements
- Long-term containment requirements
- Physical and chemical properties of tailings
- Method of tailings deposition
- Water management plan

Closure and reclamation objectives should be considered at the start of mining operations.
Conclusions (contd.)

- TMF is a positive step towards decreasing liability and environmental risks

- Suitability of proposed indicators for specific deposit types will have to be verified by field measurements over time
 - Continuous improvement / adjustment to site specific RTR criteria
 - Knowledge base will improve as unproven tailings technologies are validated at a commercial-scale over time

- Design, operation and regulatory process should accommodate adaptive management approach

- Other ways such as low fines mine plan should be considered to reduce FT generation
Questions?
DISCLAIMER

This presentation has been prepared by a representative of Advisian.

The presentation contains the professional and personal opinions of the presenter, which are given in good faith. As such, opinions presented herein may not always necessarily reflect the position of Advisian as a whole, its officers or executive.

Any forward-looking statements included in this presentation will involve subjective judgment and analysis and are subject to uncertainties, risks and contingencies—many of which are outside the control of, and may be unknown to, Advisian.

Advisian and all associated entities and representatives make no representation or warranty as to the accuracy, reliability or completeness of information in this document and do not take responsibility for updating any information or correcting any error or omission that may become apparent after this document has been issued.

To the extent permitted by law, Advisian and its officers, employees, related bodies and agents disclaim all liability—direct, indirect or consequential (and whether or not arising out of the negligence, default or lack of care of Advisian and/or any of its agents)—for any loss or damage suffered by a recipient or other persons arising out of, or in connection with, any use or reliance on this presentation or information.