Thixotropic effects on the rheology of polymer amended mature fine tailings

Shabnam Mizani
Paul Simms
Nick Beier & Ward Wilson
Rheological properties of note in polymer amended MFT

• Viscosity bifurcation – manifested yield stress is shear and ageing dependent during flow
• When material stops flowing (or even when it is still flowing at a relatively slow speed), it rapidly increases in yield stress due to both thixotropy and consolidation
• Practically, this means that flocculated tailings can recover from over-shearing
• Ageing – thixotropy influence on long term dewatering?
Viscosity bifurcation Part I

Shearing from state of rest \(YS \sim 400 \text{ Pa} \)
Viscosity Bifurcation Part II
Manifested Yield Stress after shearing during deposition ~ 50 Pa
Are there constitutive models that describe this behaviour?

Yes, Hewitt or Coussot various papers

Model viscosity as a function of shear

And ageing
When flocs shear do they permanently shear? G' measured by oscillatory rheometry
Before shear, after, after plus 45 minutes
Before shear, after, after plus 45 minutes- Image analysis of above images
Consequence for surface deposition: Large (6 m) flume tests at OSTRF
We know how to adjust mixing regime to control tailings quality: 3 versus 2 static mixers
Non-contact displacement sensors to track transient profile
First pour – “fast” (36 litres / minute)

-

[Graph showing relationship between runout (m) and height (cm) for various times t: △ t=5min, × t=10min, ◇ t=15min, + t=20min, ○ t=end, X Measured]
Can be predicted with a YS close to low end YS observed in rheology

LT Prediction using 60 Pa YS

Deposited at 36 litres / min for 25 minutes
“Slow” pour – 10 litres / minute
Pictures from the slow pour

We are trying to model these tests.
Early deposition can be fitted to 400 Pa – YS corresponding from the at rest tailings
We are trying to model this – CFX and SPH...here is an SPH output- yellow are highly sheared tailings, blue tailings that recovered 400 kPa YS
Application of ageing/thixotropy to dewatering:
10 cm tall samples...pore-water pressure dissipation stops at 10 days
SEM Images from 1, 7, 21, 35 & 60-Day Samples (500X, in a Clockwise Pattern)
Acknowledgements

• OSTRF
• COSIA
• NSERC
• Shell Canada