Shear strength and density of oil sands fine tailings for reclamation to a boreal forest landscape

Gord McKenna
Brent Mooder
Bill Burton
Andy Jamieson

Illustrations by Derrill Shuttleworth

IOSTC 2016
Lake Louise
Design tailings deposits to meet the goals for the reclaimed landscape
The reclamation objective
Self-sustaining, locally common, boreal forest
Boreal forest
Fen (0m)
AET<P

Shallow-water wetland (1 to 2m)
AET>P

Marsh (<0.5 to 1.0m)
AET>P

Lake (>2m)
AET>P
Open water

- Fen (0m) AET<P
- Shallow-water wetland (1 to 2m) AET>P
- Marsh (<0.5 to 1.0m) AET>P
- Lake (>2m) AET>P
The 10% rule of thumb
Oil sands
fluid tailings types
Stronger denser oil sands tailings types

http://www.macleans.ca/wp-content/uploads/2014/06/MAC23_CSR01_POST.jpg
Strength and solids content

![Graph showing the relationship between peak undrained shear strength (kPa) and solids content. The graph includes different water types and capping & settling firm to stiff phases. The diagram highlights soil mechanics and fluid mechanics limits.]

GOALS

WATER

TYPES

CAPPING & SETTLING

FIRM TO STIFF
Strength and solids content
Capping methods

- Soft ground
- Sand beaching
- Raining in sand
- Floating coke cap
- Floating water cap

Standard earthworks techniques

- Plastic limit
- Liquid limit 2 to 5 kPa
Supporting topographic relief

Change to 3D Derrill drawing

Factor of safety

1.6
1.4
1.2
1.0
0.8

Undrained strength (kPa)

15 20 25 30 35
GOALS WATER TYPES CAPPING & SETTLING FIRM TO STIFF
GOALS WATER TYPES CAPPING & SETTLING FIRM TO STIFF