Dewaterability of Tailings from a Hybrid Bitumen Extraction Process

Feng Lin, Yuming Xu, Tadeusz Dabros
Natural Resources Canada, CanmetENERGY in Devon
Richard Nelson
Alberta Innovates

Presentation at 5th International Oil Sands Tailings Conference
Lake Louise, Alberta
December 4-7, 2016
Hybrid Bitumen Extraction (HBE)

- Mined ore
- Slurry
- Flotation vessel
- Diluent recovery
- Froth treatment
- Tailings pond
- Product

- Makeup water
- Recycle water
- Tails

2/5 diluent
3/5 diluent

ambient temperature

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Background of HBE Research

- **Batch-scale**
 - Conducted at University of Alberta
 - Robust in obtaining high bitumen recovery
 - Adding ethyl cellulose improved froth quality
 - Amount of solvent added depended on ore grade
 - No need to heat water and no caustics
 - Reduce energy intensity and GHG emission

References:

- **Pilot-scale**
 - Currently underway at CanmetENERGY in Devon
Movie of Pilot Scale HBE Flotation
Objective of this Study

- To investigate the dewatering of tailings produced by ambient HBE, and compare to tailings produced from the current hot water extraction process.
Composition (wt%) of Oil Sands Ore

<table>
<thead>
<tr>
<th>Ore</th>
<th>Bitumen</th>
<th>Solids</th>
<th>Water</th>
<th>Fines (of Solids)</th>
<th>Extractability</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS1</td>
<td>9.68</td>
<td>83.87</td>
<td>6.24</td>
<td>20.58</td>
<td>Poor</td>
</tr>
<tr>
<td>OS2</td>
<td>11.68</td>
<td>84.75</td>
<td>3.16</td>
<td>24.38</td>
<td>Medium</td>
</tr>
<tr>
<td>OS3</td>
<td>11.35</td>
<td>85.60</td>
<td>3.02</td>
<td>16.31</td>
<td>Good</td>
</tr>
</tbody>
</table>

Simulated Process Water (in ppm)

<table>
<thead>
<tr>
<th>pH</th>
<th>Na⁺</th>
<th>Ca²⁺</th>
<th>Cl⁻</th>
<th>SO₄²⁻</th>
<th>HCO₃⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td>1012</td>
<td>20</td>
<td>922</td>
<td>128</td>
<td>915</td>
</tr>
<tr>
<td>9.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solvent: n-C6, n-C5 to n-C7, toluene
Tailings Sample Preparation: Batch Extraction Unit

- Oil Sands
- Solvent
- Soak
- 1st Water
- Conditioning
- 2nd Water
- Flotation
- Bitumen Froth
- Tailings
- Dewatering tests
Characterization of Tailings Dewatering
Experiments on Tailings Dewatering

- Sedimentation
 Sediment height vs. time
 (fixed $g = 355 \text{ m/s}^2$)

- Consolidation
 Equilibrium sediment height vs. acceleration (g)
 (various rpms)
Sedimentation
Calculation of Setting Rate

\[R_{ave} = \frac{(1 - NH_{eq})}{t_{eq}} \]

Normalized Sediment height

\(NH_{eq} \)

\(t_{eq} \)

Time (h)
Effect of HBE on Settling Rate

Settling rate, R_{ave} (h$^{-1}$)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Consolidation
Initially

Centrifuge……..

H_0

H_{eq1}

H_{eq2}

H_{eq3}

H_{eq4}

H_{eq5}

g_1

g_2

g_3

g_4

g_5

Heq (mm)

g (m/s2)

Py(φ) (kPa)

ϕ (w/w)

Analysis

Green, M. D.; Eberl, M.; Landman, K. A. 1996. AIChE Journal, 42: 2308
Effect of HBE on Consolidation: OS1

- Compressive yield stress, $P_y(\phi)$ (kPa)
- Solid weight fraction, ϕ (w/w)

Data points:
- 0% C6, 50°C, pH 9.0
- 0% C6, 50°C, pH 8.1
- 20% C6, 20°C, pH 8.1
- 30% C6, 20°C, pH 8.1
Effect of HBE on Consolidation: OS2

Compressive yield stress, $Py(\phi)$ (kPa)

Solid weight fraction, ϕ (w/w)

- 0%C6, 50°C, pH9.0
- 0%C6, 50°C, pH8.1
- 10%C6, 20°C, pH8.1
- 15%C6, 20°C, pH8.1
- 20%C6, 20°C, pH8.1
Effect of HBE on Consolidation: OS3

Compressive yield stress, $P_y(\phi)$ (kPa)

Solid weight fraction, ϕ (w/w)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2016
Conclusions

- Tailings dewatering studied by single- and multi-speed centrifuge techniques
- Ambient HBE enhanced solid sedimentation rate
- Tailings from HBE were more compressible
Acknowledgements

- Mr. Nathanael King: Partial lab support on batch extractions;

- Financial support from the Government of Canada’s Program for Energy Research and Development, and Alberta Innovates.

THANK-YOU!!!

Contact email: feng.lin@canada.ca