Effects of Shearing and Shearing Time on Dewatering and Yield Characteristics of Oil Sands Flocculated Fine Tailings

International Oil Sands Tailings Conference Lake Louise, AB
December 4-7, 2016

Babak Derakhshandeh
Coanda Research and Development Corp., Burnaby, BC, Canada

Abu Junaid and Gavin Freeman
Shell Canada Ltd. Calgary, AB, Canada
Definitions & cautionary note

Reserves: Our use of the term “reserves” in this presentation means SEC proved oil and gas reserves.

Resources: Our use of the term “resources” in this presentation includes quantities of oil and gas not yet classified as SEC proved oil and gas reserves. Resources are consistent with the Society of Petroleum Engineers (SPE) 2P + 2C definitions.

Resources and potential: Our use of the term “resources and potential” are consistent with SPE 2P + 2C + 2U definitions.

Organic: Our use of the term Organic includes SEC proved oil and gas reserves excluding changes resulting from acquisitions, divestments and year-average pricing impact.

Shales: Our use of the term ‘shales’ refers to tight, shale and coal bed methane oil and gas acreage.

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this release “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to subsidiaries in general or to those who work for them. These expressions are also used where no useful purpose is served by identifying the particular company or companies. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this release refer to companies over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations” respectively.

Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in a venture, partnership or company, after exclusion of all third-party interest.

This release contains forward-looking statements concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this release, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. There can be no assurance that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this release are expressly qualified in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2015 (available at www.shell.com/investor and www.sec.gov). These risk factors also expressly qualify all forward looking statements contained in this release and should be considered by the reader. Each forward-looking statement speaks only as of the date of this release, July 28, 2016. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this release.

With respect to operating costs synergies indicated, such savings and efficiencies in procurement spend include economies of scale, specification standardisation and operating efficiencies across operating, capital and raw material cost areas.

We may have used certain terms, such as resources, in this release that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
Introduction

• Pipeline flow of flocculated MFT

(a) Symmetric-lubricated

(b) Stratified-lubricated

(c) Symmetric-non-lubricated

(d) Stratified-non-lubricated
Approach

• A primarily empirical approach was developed to model the most intensive shearing conditions in a typical pipe at laminar flow regime

Why most intensive??

➢ If the effect of shearing under such intensive conditions is negligible then shearing in the pipeline is not a design constraint

What is the most intensive shearing condition??

➢ When the lubricated layer and the non-yielded core of the pipe are disrupted

➢ At these conditions, assuming flow of a Newtonian fluid in laminar regime, shear rate is:

\[\dot{\gamma} = \frac{8U}{D} \]

\(U \) = Bulk velocity in the pipe
\(D \) = Pipe internal diameter
Need to accommodate large flocs.
Need to have a uniform shear rate distribution in the gap

\[\dot{\gamma} = \frac{N \times \overline{R}}{R_o - R_i} \]

\[\overline{R} = \frac{R_o + R_i}{2} \]

$N =$ Bob rotational rate in rad/s

R_o and $R_i =$ The cup and the bob inner and outer radii including baffles

December 4-7, 2016
Materials

• Shell raw MFT:
 – ~30 wt% solids
 – MBI of ~7.3-7.6 meq/100 g solids

• Flocculants:
 • A (a partially hydrolyzed polyacrylamide)
 • B (a polyethylene oxide)
 • C (a Ca-polyacrylamide)

• Flocculated MFT:
 • Produced by mixing the raw MFT with a flocculant by a 5” (3.8” impeller) in-line dynamic mixer at various mixing conditions
 • Only well flocculated materials were selected
Experimental Procedure

- The field-scale pipeline transport system:

\[
\begin{align*}
Q &= 662 \text{ m}^3/\text{hr} & D &= 24" \text{ or } 30" \\
Q &= 662 \text{ m}^3/\text{hr} & Q &= 2648 \text{ m}^3/\text{hr} \\
Q &= 662 \text{ m}^3/\text{hr} \\
Q &= 662 \text{ m}^3/\text{hr}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Flow Rate, Q</th>
<th>Pipe Nominal Diameter, D_n</th>
<th>Nominal Shear Rate, 8U/D</th>
<th>Pipe Length</th>
<th>Pipe Length</th>
<th>Pipe Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m³/hr)</td>
<td>(in)</td>
<td>(1/s)</td>
<td>(m)</td>
<td>(m)</td>
<td>(m)</td>
</tr>
<tr>
<td>662</td>
<td>30</td>
<td>8</td>
<td>100</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>662</td>
<td>24</td>
<td>16</td>
<td>100</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>2648</td>
<td>30</td>
<td>32</td>
<td>100</td>
<td>500</td>
<td>1000</td>
</tr>
<tr>
<td>2648</td>
<td>24</td>
<td>63</td>
<td>100</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>

- Parameters measured before and after shearing in the Couette:
 - Yield stress
 - Capillary Suction Time (CST)
 - Permeability Index (PI)
 - 7-day water release in graduated cylinders.(for 1 km transport distance)
Experimental Procedure

• Prolonged Shearing:
 • The highest shear rate chosen (63 s⁻¹)
 • Applied the highest shear rate for residence times corresponding to 5 and 10 km transport distance

• The following parameters were measured on the sheared flocculated MFT:
 • Yield stress
 • Capillary Suction Time (CST)
 • Permeability Index (PI)
 • 7-day water release in graduated cylinders
Variation of Dewaterability with Shear

- CST increases with the shear rate and duration of shear
- A higher CST value indicates poorer immediate dewaterability
- Generally, the trends are similar with all polymer types
- Pipeline transportation of well-flocculated MFT samples will not affect the immediate dewaterability significantly
Effects of Prolonged Shearing on Short-Term Dewatering

- $8U/D=63 \text{ s}^{-1}$ for residence times corresponding to 1, 5, and 10 km transport.
Effects of Prolonged Shearing on Dewatering

- 7-day water release in graduated cylinders
Variation of Yield Stress with Shear

- Yield stress decreased *significantly* with shearing at all shearing conditions, even the mildest
- Yield stress change in actual pipeline can be significantly less than those measured in this study due to the protection provided by the lubricated layers and formation of non-yielded cores
Conclusions

• Pipeline shearing has only a *slightly* negative impact on the short-term dewatering of flocculated MFT (measured by CST)
• The dewatering of flocculated MFT can be accelerated by shearing
• Yield stress of the MFT decreases significantly by shearing
• Pipeline transportation can produce a slightly less dewatered deposit with significantly reduced strength immediately following deposition, which is predicted to release more water volume over time compared to unsheared flocculated MFT