Adsorption isotherm and kinetics study of acid-extractable organics removal from oil sands process-affected water on biochar and activated carbon

Tazul I. Bhuiyan and Josephine M. Hill
Schulich School of Engineering, University of Calgary

Jin K. Tak and Don Harfield
InnoTech Alberta

5th International Oil Sands Tailings Conference
Lake Louise, AB
December 5, 2016
Outline

- Introduction
 - Oil sands process-affected water
 - Naphthenic acids
 - Organics removal using biomass based adsorbent
- Experimental methods
- Results
 - Acid-extractable organics removal by biochar and activated carbon
 - Adsorption isotherms
 - Adsorption kinetics study
- Conclusions

2.2 volumes of freshwater are required for each volume of bitumen produced

Oil sands process-affected water (OSPW) contains salts, heavy metals, phenols, benzene, toluene, and organic acids (e.g., naphthenic acids (NA))

NA above 5 mg/L can cause toxicity to a variety of organisms

For environmental discharge and reclamation process, NA needs to be reduced in OSPW

Naphthenic acids

- NA is a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids \(^{1}\)
- Both a hydrophilic (carboxylic group) and a hydrophobic (non-polar aliphatic) end \(^{1}\)
- Empirical formula \(C_nH_{2n+z}O_2\), n carbon number included R, \(CH_2\) and ring carbons \(^{1}\)
- Acid extractable organics (AEO) considered as NA \(^{2}\)
- AEO Fourier Transform Infrared (FTIR) spectrum is identical to commercial NA \(^{2}\)

Naphthenic acid structure \(^{2}\)

2. Grewer et al., 2010. *Sci. Total Environ.* 408(23), 5997-6010
Benefits-Biomass
- Biomass has significant carbon content (60 million ton C/yr in 2003) 1
- Confine atmospheric carbon 2

Drawbacks-Biomass
- Yield is very low (15-20% fixed carbon content in biomass) 3
- Transportation cost: Fixed cost is $5/ton; variable cost is $0.12/ton-km 4

Benefit- Biochar vs activated carbon (AC)
- Production cost: $245/ton biochar vs $1500/ton AC 5

Drawback- Biochar vs AC
- Adsorption capacity: Biochar (0-30%) vs AC (70-95%)

2. Lehmann, J., Joseph S., **2009. Biochar for Environmental Management: Science and Technology.**
The main objective of this study is

- To obtain AEO adsorption isotherm and kinetics data required for process design using biochar and activated carbon
Preparation of biochar and AC

Commercial activated carbon (AC)
- Norit AC - coal based, steam activated and powder
- ColorSorb G5 - wood based, steam activated and powder
- Darco AC - coal based, steam activated and granular

Biochar, Acidified biochar and CO₂ Aspen AC

Biomass → Pyrolysis at vertical down-flow packed bed reactor

- 600°C, N₂ for 0.5 h

Aspen biochar → Activation

- 800°C, CO₂

CO₂ Aspen AC

Wheat straw or Hemp shives biochar → Pyrolysis at rotary drum pyrolyzer → Drying at 105°C for 12 h

- 600°C, no gas for 0.5 h

- 13% impregnation of H₂SO₄

Acidified Hemp shives biochar
Characterization and Adsorption tests

- Physical property analysis - N₂ adsorption
- Batch adsorption - incubating shaker
- Analysis - Total organic carbon analyzer

Batch adsorption procedure

- **0.02/0.4 g of biochar or AC sample**
 - Adsorption isotherm
 - 0.01-1.5 g of biochar or AC sample

1. **Mixing**
2. **Shaking at 225 rpm, 25°C for 24 hrs**
3. **Filter**
4. **TOC analysis**

Batch adsorption procedure

\[
AEO \text{ removal (mg/g)} = \frac{C(\text{feed}) - C(\text{after adsorption})}{\text{adsorbent dose}}
\]

\[
AEO \text{ removal (%) } = \frac{C(\text{feed}) - C(\text{after adsorption})}{C(\text{feed})} \times 100%
\]
Norit AC had the highest adsorption capacity of 49 mg/g

All biochar had very low adsorption capacity (1.2-2.1 mg/g)

CO₂ activated Aspen AC had adsorption capacity of 41 mg/g
Commercial AC and CO₂ activated AC removed more than 90% AEO

Acidified Hemp shives removed 41% AEO compare to 4% without acidification

Wheat straw biochar removed 21% AEO
Adsorption isotherms

Adsorption isotherm - describing a phenomenon to retention or mobility of a substance from aquatic media to a solid phase at constant temperature and pH

Langmuir isotherm

\[q_e = \frac{a_0 b C_e}{1 + b C_e} \]

Freundlich isotherm

\[q_e = K_F C_e^n \]

- \(q_e \) - amount AEO adsorbed in solid surface
- \(C_e \) - equilibrium concentration
- \(a_0 \) and \(b \) - Langmuir constants
- \(K_F \) and \(n \) - Freundlich constants
Norit AC isotherm data were fit well with both Langmuir ($R^2 = 0.99$, $RMSE = 2.8$ & $\chi^2 = 1.3$) and Freundlich isotherm model ($R^2 = 0.98$, $RMSE = 4.5$ & $\chi^2 = 3.6$)

Acidified Hemp shives isotherm data were not fit well by either the Langmuir ($R^2 = 0.72$, $RMSE = 0.4$ & $\chi^2 = 0.5$) or Freundlich model ($R^2 = 0.74$, $RMSE = 0.4$ & $\chi^2 = 0.4$)
Design of single-stage batch adsorption system

Batch adsorption process

AEO Initial Concentration, $C_o=65$ mg/L, time $t=0$

AEO Equilibrium concentration, $C_e=1.5$ mg/L, time $t=t$

- Norit AC required : 12 kg
- Acidified biochar required : 212 kg
- Biochar required : 2690 kg

Design equation

$$\frac{M}{V} = \frac{C_o - C_e}{q_e} = \frac{C_o - C_e}{a_0 b C_e} \frac{1}{1 + b C_e}$$

Adsorption isotherm curve for Norit AC

- $(21$ mg/g, 6.5 mg/L)
- $(5.5$ mg/g, 1.5 mg/L)
- $(49$ mg/g, 18.8 mg/L)
AEO adsorption kinetics study

- Pseudo first-order model:

 \[\ln(q_e - q_t) = \ln(q_e) - \frac{k_1 t}{2.303} \]

- Pseudo second-order model:

 \[\frac{t}{q_t} = \frac{1}{K_2 q_e^2} + \frac{1}{q_e} \]

- Intra-particle diffusion model:

 \[q_t = k_{pi} t^\frac{1}{2} + c_i \]

- \(q_t \) - amount AEO adsorbed in solid surface at time, \(t \)
- \(k_1 \) – pseudo first-order rate constant
- \(K_2 \) – pseudo second-order rate constant
- \(K_{pi} \) – intra-particle diffusion model
- \(c_i \) - constant applicable for stage i
The kinetic data for Norit AC and wheat straw biochar were both fit well by the pseudo-2nd order model. Both chemisorption and physisorption were involved. After 200 min both samples reached equilibrium, and the kinetic rate constants were high (0.03 g/mg.min)

Design of column adsorption process

Thomas equation for an adsorption column

\[
\frac{C_e}{C_0} = \frac{1}{1 + e^{\frac{k_2 (q_e M - C_0 V)}{Q}}}
\]

\[
\ln \left(\frac{C_0}{C_e} - 1 \right) = \frac{k_2 q_e M}{Q} - \frac{k_2 q_e V}{Q}
\]

- Norit AC required: 33 kg
- Biochar required: 2080 kg

Conclusions

- Norit AC adsorption data were fit well with both Langmuir isotherm and Freundlich isotherm.
- In batch adsorption, 12 kg Norit AC, 212 kg acidified biochar and 2690 kg biochar are required to treat 1000 L of OSPW containing (Initial: 65 mg/L AEO, desired: 1.5 mg/L).
- The kinetic data for Norit AC and wheat straw biochar were both fit well by the pseudo-second order model and the samples reached at equilibrium after 200 min.
- In column adsorption, 33 kg Norit AC and 2080 kg biochar are required to treat 1000 L of OSPW with 10 L/min flowrate (Initial: 65 mg/L AEO, desired: 1.5 mg/L).
Acknowledgement

- Alberta Innovates Bio Solutions and Suncor Energy for funding the project
- Alberta-Pacific Forest Industries Inc. for providing wood chips
- Suncor Energy for providing OSPW
- Farzin Malekani for technical assistance with TOC measurements
- All group members of Laboratory for Environmental Catalytic Applications (LECA)
THANK YOU