Muskeg River Mine External Tailings Facility

NORTH POOL DEPOSIT PERFORMANCE

By: Monica Ansah-Sam, MESc., P.Eng, Karsten Rudolf, P.Eng
Shell Canada
Outline

- Background
- North Deposition History and Results
- Trafficability and Capping
- Summary
Background

- Co-deposition of thickened tailings (TT), coarse sand tailings, and the processed tailings from solvent recovery (TSRU tailings) was used to develop a fines enriched sand and sandy fines deposit within the External Tailings Facility (ETF) at Shell Canada’s Muskeg River Mine (MRM)

- An understanding of the composition, strength and consolidation behaviour of a tailings deposit is necessary both during the operational phase of a deposit and to support closure design

- Characterization and performance monitoring of the NPD provides base line criteria and indicator of future NPD type deposits

- This presentation will summarize the deposition history, performance results to date, and ongoing and future work
Composition Of Tailings Stream Forming North Pool Deposit

- Whole Tailings slurry
 - Water
 - Fines
 - Coarse
 - Whole Tailing
 - Coarse Sand Tailings
 - Sand Deposits
 - Recycle Water
 - Fluid Fine Tailings
 - Thickener Deposit (TT)
 - TSRU Deposit

- PSV
- Froth treatment & solvent recovery
- Diluted Bitumen to Scotford
- Thickeners
- Warm Water Tank
- Recycle water

Copyright of Shell International

December 7, 2016
Depositional History of North Pool Deposit Isolated Ponds (2003 and 2004)
Depositional History of North Pool Deposit
Cross Dyke Breach (2005 and 2006)
Depositional History of North Pool Deposit Co-disposed Beach (2007 - 2009)
Depositional History of North Pool Deposit Co-disposed Beach (2010 - 2012)
Current North Pool Deposit
2015 Tailings Investigation
Fines Content and Solids Content Distribution

[Diagram showing elevation (masl) with scales and legend for fines content and solids content distribution.]

KEYPLAN
SCALE 1:100,000
Assessment of Strength Development

- A comparison of CPT undrained shear strengths in annually repeated investigation locations shows gradual strength gain
Highlights

Historic Slurry Averages:
- TSRU: Solids content 16 ± 5%, Fines44m 54 ± 8%, Bitumen 5.7 ± 1.2%
- TT: Solids content 29.8 ± 3.3%, Fines44m 34.5 ± 8.2%, Bitumen 1.5 ± 0.5%
- CST: Solids content 48 ± 2%, Fines44m 10 ± 8%, Bitumen 0.5 ± 0.02%

Deposit:
- Coarse CST/WT observed close to CST/WT discharge points
- CST may have caused some compaction of TSRU below the final elevation of the splitter dyke
- Co-deposition of TT and CST and TSRU resulted in a fines enriched and sandy fines deposit
- Average solids content and fines of 70 % and 28% in the NPD deposit
- Average undrained shear strength of BBW is 14kPa and 34kPa for BAW
- Average SC of 73% and SFR of 4.3 within 250 of beach and decreases to 68.5% and SFR 2.3 within 500-1000 m of the beach
- Average SC and SFR from year to year ranged 73% to 67% and 3.2 to 1.8 respectively
Consolidation Analysis

- Ongoing analysis using a zonated approach for further consolidation modelling is being evaluated for landform design and closure design.

- Preliminary zonation developed based on factors such as fines content, solids content, and zones of cell compaction.

Preliminary Zonation
Trafficability and Capping Studies

- Trafficability studies have been conducted in some areas of the NPD for pipeline extensions
- Deposit is trafficable in certain areas of the NPD (BAW)
- Indications are that cap placement is feasible in these areas with equipment of similar bearing pressure
Long Term Activities

- More geotechnical investigation will be done to characterize some areas where more data is required to complete the land form design

- Additional instrumentation and environmental studies will be done as required

- The performance based approach will be used during placement of cap and ongoing settlement will be accommodated as much as practicable
Summary

- Data from depositional history, CPT and sampling were used to develop a broad understanding of the NPD.

- Characterization of the NPD will provide inputs for regulatory reporting, operations support, future deposit optimization, tailings planning, and closure design.

- For closure designs, further consolidation analysis will be done for the zones identified in the deposit.

- Some areas of the NPD is trafficable. More work is ongoing on high fines deposits and other deposits as required.

- More work may be done to include the development of a process which may effectively model the strength of the deposit in a 3-D block model.

- Environmental characterization will be included in future work.
Acknowledgements

- Adam Thompson, Shell
- Michael Graham, Shell
- Leah Hachey, Shell
- Scott Martens, Shell
Thank You
CLASSIFICATION OF NPD

The diagram illustrates a ternary plot for the classification of NPD (Non-Pipeline Deposits) based on the content of Solids, Water, and Fines. The axes represent the percentage content of each component, with the triangle dividing the space into three regions:

- **Sand Matrix** for regions with high Sand and low Water and Fines.
- **Fines Matrix** for regions with high Fines and low Sand and Water.
- **Water Matrix** for regions with high Water and low Sand and Fines.

Points on the plot indicate the composition of various NPD samples, allowing for a visual assessment of the ratio of Solids, Fines, and Water content.
Results of 2015 Investigation

## Property	Value
Average Solids Content | 71.1%
Clay-Size Fraction (<2 μm)* | 4.5%
Fines Fraction (<44 μm)* | 28.3%
Average Bitumen Content | 3.6%
Average Water Content | 25.3%
Average Dry Density (kg/m³) | 1,341
Average SFR | 2.5

Nominal Beach Length

	0 m – 250 m	250 m – 500 m	500 m – 1000 m
Average Solids Content | 73.8% | 72.3% | 68.5%
Clay-Size Fraction (<2 μm)* | 2.5% | 3.2% | 4.6%
Fines Fraction (<44 μm)* | 19.0% | 23.4% | 30.6%
Average Bitumen Content | 3.1% | 3.6% | 4.7%
Average Water Content | 23.2% | 24.2% | 26.9%
Average Dry Density (kg/m³) | 1421 | 1379 | 1276
Average SFR | 4.3 | 3.3 | 2.3

Depositional Period

--- | --- | --- | --- | ---
Average Solids Content | 73.2% | 69.3% | 68.0% | 67.7%
Clay-Size Fraction (<2 μm)* | 3.5% | 5.65% | 5.91% | 5.54%
Fines Fraction (<44 μm)* | 23.6% | 33.6% | 35.1% | 32.3%
Average Bitumen Content | 3.3% | 4.0% | 4.4% | 4.4%
Average Water Content | 23.5% | 26.6% | 27.6% | 27.9%
Average Dry Density (kg/m³) | 1406 | 1291 | 1257 | 1247
Average SFR | 3.2 | 2.0 | 1.8 | 2.1
Strength Parameters

MRM ETF NORTH POOL DEPOSIT BBW
UNDRAINED SHEAR STRENGTH DISTRIBUTION

Average = 14 kPa
Mode = 1 kPa
Maximum = 111 kPa
MRM ETF NORTH POOL DEPOSIT BAW
UNDRAINED SHEAR STRENGTH DISTRIBUTION

Minimum = 8 kPa
Average = 34 kPa
Mode = 30 kPa
Maximum = 99 kPa